Adam17 Deficiency Promotes Atherosclerosis by Enhanced TNFR2 Signaling in Mice.
نویسندگان
چکیده
OBJECTIVE ADAM17 (a disintegrin and metalloproteinase 17) is a sheddase releasing different types of membrane-bound proteins, including adhesion molecules, cytokines, and their receptors as well as inflammatory mediators. Because these substrates modulate important mechanisms of atherosclerosis, we hypothesized that ADAM17 might be involved in the pathogenesis of this frequent disease. APPROACH AND RESULTS Because Adam17-knockout mice are not viable, we studied the effect of Adam17 deficiency on atherosclerosis in Adam17 hypomorphic mice (Adam17ex/ex), which have low residual Adam17 expression. To induce atherosclerosis, mice were crossed onto the low-density lipoprotein receptor (Ldlr)-deficient background. We found that Adam17ex/ex.Ldlr-/- mice developed ≈1.5-fold larger atherosclerotic lesions, which contained more macrophages and vascular smooth muscle cells than wild-type littermate controls (Adam17wt/wt.Ldlr-/-). Reduced Adam17-mediated shedding led to significantly increased protein levels of membrane-resident TNFα (tumor necrosis factor) and TNFR2 (tumor necrosis factor receptor 2), resulting in a constitutive activation of TNFR2 signaling. At the same time, Adam17 deficiency promoted proatherosclerotic cellular functions, such as increased proliferation and reduced apoptosis in cultured macrophages and vascular smooth muscle cells and increased adhesion of macrophages to vascular endothelial cells. Because siRNA (small interfering RNA)-mediated knockdown of Tnfr2 rescued from aberrant proliferation and from misregulation of apoptosis in Adam17-depleted cells, our data indicate that TNFR2 is an important effector of ADAM17 in our mouse model. CONCLUSIONS Our results provide evidence for an atheroprotective role of ADAM17, which might be mediated by cleaving membrane-bound TNFα and TNFR2, thereby preventing overactivation of endogenous TNFR2 signaling in cells of the vasculature.
منابع مشابه
Shedding of TNF receptor 2 by effector CD8⁺ T cells by ADAM17 is important for regulating TNF-α availability during influenza infection.
Elevated levels of solTNFR2 are observed in a variety of human pathophysiological conditions but regulation of TNFR2 levels during disease is not well understood. We found that solTNFR2 levels were increased following influenza infection or live-attenuated influenza virus challenge in mice and humans, respectively. As influenza-specific CD8(+) T cells up-regulated expression of TNFR2 after infe...
متن کاملEndothelial-specific transgenesis of TNFR2 promotes adaptive arteriogenesis and angiogenesis.
OBJECTIVE We have previously shown that the tumor necrosis factor receptor 2 (TNFR2) protein is highly upregulated in vascular endothelium in response to ischemia, and a global deletion of TNFR2 in mice blunts ischemia-induced arteriogenesis and angiogenesis. However, the role of endothelial TNFR2 is not defined. In this study, we used endothelial cell (EC)-specific transgenesis of TNFR2 (TNFR2...
متن کاملFunctional analyses of TNFR2 in physiological and pathological retina angiogenesis.
PURPOSE To determine the function of tumor necrosis factor receptor-2 (TNFR2) in retinal development and ischemia-induced revascularization in an oxygen-induced retinopathy (OIR) model. METHODS Mice with a global deletion of TNFR2 (TNFR2-KO) or with a vascular endothelial cell (EC)-specific TNFR2 transgene (TNFR2-TG) were compared to wild-type C57BL/6 mice (WT). Retinal vasculature developmen...
متن کاملLNK/SH2B3 Loss of Function Promotes Atherosclerosis and Thrombosis.
RATIONALE Human genome-wide association studies have revealed novel genetic loci that are associated with coronary heart disease. One such locus resides in LNK/SH2B3, which in mice is expressed in hematopoietic cells and suppresses thrombopoietin signaling via its receptor myeloproliferative leukemia virus oncogene. However, the mechanisms underlying the association of LNK single-nucleotide pol...
متن کاملBlockade of TNFR2 signaling enhances the immunotherapeutic effect of CpG ODN in a mouse model of colon cancer.
Through the tumor necrosis factor (TNF) receptor type II (TNFR2), TNF preferentially activates, expands, and promotes the phenotypic stability of CD4+Foxp3+ regulatory T (Treg) cells. Those Treg cells that have a high abundance of TNFR2 have the maximal immunosuppressive capacity. We investigated whether targeting TNFR2 could effectively suppress the activity of Treg cells and consequently enha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 37 2 شماره
صفحات -
تاریخ انتشار 2017